3.5.47 \(\int \frac {(c+d x^2)^3}{x^{7/2} (a+b x^2)} \, dx\) [447]

3.5.47.1 Optimal result
3.5.47.2 Mathematica [A] (verified)
3.5.47.3 Rubi [A] (verified)
3.5.47.4 Maple [A] (verified)
3.5.47.5 Fricas [C] (verification not implemented)
3.5.47.6 Sympy [A] (verification not implemented)
3.5.47.7 Maxima [A] (verification not implemented)
3.5.47.8 Giac [B] (verification not implemented)
3.5.47.9 Mupad [B] (verification not implemented)

3.5.47.1 Optimal result

Integrand size = 24, antiderivative size = 283 \[ \int \frac {\left (c+d x^2\right )^3}{x^{7/2} \left (a+b x^2\right )} \, dx=-\frac {2 c^3}{5 a x^{5/2}}+\frac {2 c^2 (b c-3 a d)}{a^2 \sqrt {x}}+\frac {2 d^3 x^{3/2}}{3 b}-\frac {(b c-a d)^3 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{9/4} b^{7/4}}+\frac {(b c-a d)^3 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{9/4} b^{7/4}}+\frac {(b c-a d)^3 \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{9/4} b^{7/4}}-\frac {(b c-a d)^3 \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{9/4} b^{7/4}} \]

output
-2/5*c^3/a/x^(5/2)+2/3*d^3*x^(3/2)/b-1/2*(-a*d+b*c)^3*arctan(1-b^(1/4)*2^( 
1/2)*x^(1/2)/a^(1/4))/a^(9/4)/b^(7/4)*2^(1/2)+1/2*(-a*d+b*c)^3*arctan(1+b^ 
(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(9/4)/b^(7/4)*2^(1/2)+1/4*(-a*d+b*c)^3*ln 
(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(9/4)/b^(7/4)*2^(1/2 
)-1/4*(-a*d+b*c)^3*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a 
^(9/4)/b^(7/4)*2^(1/2)+2*c^2*(-3*a*d+b*c)/a^2/x^(1/2)
 
3.5.47.2 Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.63 \[ \int \frac {\left (c+d x^2\right )^3}{x^{7/2} \left (a+b x^2\right )} \, dx=\frac {\frac {4 \sqrt [4]{a} b^{3/4} \left (15 b^2 c^3 x^2+5 a^2 d^3 x^4-3 a b c^2 \left (c+15 d x^2\right )\right )}{x^{5/2}}+15 \sqrt {2} (-b c+a d)^3 \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+15 \sqrt {2} (-b c+a d)^3 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{30 a^{9/4} b^{7/4}} \]

input
Integrate[(c + d*x^2)^3/(x^(7/2)*(a + b*x^2)),x]
 
output
((4*a^(1/4)*b^(3/4)*(15*b^2*c^3*x^2 + 5*a^2*d^3*x^4 - 3*a*b*c^2*(c + 15*d* 
x^2)))/x^(5/2) + 15*Sqrt[2]*(-(b*c) + a*d)^3*ArcTan[(Sqrt[a] - Sqrt[b]*x)/ 
(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] + 15*Sqrt[2]*(-(b*c) + a*d)^3*ArcTanh[( 
Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/(30*a^(9/4)*b^(7/ 
4))
 
3.5.47.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.02, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {368, 961, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c+d x^2\right )^3}{x^{7/2} \left (a+b x^2\right )} \, dx\)

\(\Big \downarrow \) 368

\(\displaystyle 2 \int \frac {\left (d x^2+c\right )^3}{x^3 \left (b x^2+a\right )}d\sqrt {x}\)

\(\Big \downarrow \) 961

\(\displaystyle 2 \int \left (\frac {c^3}{a x^3}+\frac {(3 a d-b c) c^2}{a^2 x}+\frac {d^3 x}{b}-\frac {(a d-b c)^3 x}{a^2 b \left (b x^2+a\right )}\right )d\sqrt {x}\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \left (-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ) (b c-a d)^3}{2 \sqrt {2} a^{9/4} b^{7/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right ) (b c-a d)^3}{2 \sqrt {2} a^{9/4} b^{7/4}}+\frac {(b c-a d)^3 \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{4 \sqrt {2} a^{9/4} b^{7/4}}-\frac {(b c-a d)^3 \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{4 \sqrt {2} a^{9/4} b^{7/4}}+\frac {c^2 (b c-3 a d)}{a^2 \sqrt {x}}-\frac {c^3}{5 a x^{5/2}}+\frac {d^3 x^{3/2}}{3 b}\right )\)

input
Int[(c + d*x^2)^3/(x^(7/2)*(a + b*x^2)),x]
 
output
2*(-1/5*c^3/(a*x^(5/2)) + (c^2*(b*c - 3*a*d))/(a^2*Sqrt[x]) + (d^3*x^(3/2) 
)/(3*b) - ((b*c - a*d)^3*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(2 
*Sqrt[2]*a^(9/4)*b^(7/4)) + ((b*c - a*d)^3*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqr 
t[x])/a^(1/4)])/(2*Sqrt[2]*a^(9/4)*b^(7/4)) + ((b*c - a*d)^3*Log[Sqrt[a] - 
 Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(4*Sqrt[2]*a^(9/4)*b^(7/4)) 
 - ((b*c - a*d)^3*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]* 
x])/(4*Sqrt[2]*a^(9/4)*b^(7/4)))
 

3.5.47.3.1 Defintions of rubi rules used

rule 368
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*(x^(k*2)/e^2))^p*(c + d*(x^(k*2)/e^2))^q, x], x, (e*x)^(1/k)], 
 x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[m 
] && IntegerQ[p]
 

rule 961
Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^( 
n_)), x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*((a + b*x^n)^p/(c + d*x^n)), 
 x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] 
&& IGtQ[p, 0] && (IntegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.5.47.4 Maple [A] (verified)

Time = 2.84 (sec) , antiderivative size = 188, normalized size of antiderivative = 0.66

method result size
derivativedivides \(\frac {2 d^{3} x^{\frac {3}{2}}}{3 b}-\frac {2 c^{3}}{5 a \,x^{\frac {5}{2}}}-\frac {2 c^{2} \left (3 a d -b c \right )}{a^{2} \sqrt {x}}-\frac {\left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 a^{2} b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(188\)
default \(\frac {2 d^{3} x^{\frac {3}{2}}}{3 b}-\frac {2 c^{3}}{5 a \,x^{\frac {5}{2}}}-\frac {2 c^{2} \left (3 a d -b c \right )}{a^{2} \sqrt {x}}-\frac {\left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 a^{2} b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(188\)
risch \(\frac {-6 a b \,c^{2} d \,x^{2}+2 b^{2} c^{3} x^{2}-\frac {2}{5} a b \,c^{3}+\frac {2}{3} a^{2} d^{3} x^{4}}{a^{2} b \,x^{\frac {5}{2}}}-\frac {\left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 a^{2} b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(198\)

input
int((d*x^2+c)^3/x^(7/2)/(b*x^2+a),x,method=_RETURNVERBOSE)
 
output
2/3*d^3*x^(3/2)/b-2/5*c^3/a/x^(5/2)-2*c^2*(3*a*d-b*c)/a^2/x^(1/2)-1/4*(a^3 
*d^3-3*a^2*b*c*d^2+3*a*b^2*c^2*d-b^3*c^3)/a^2/b^2/(a/b)^(1/4)*2^(1/2)*(ln( 
(x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*x^(1/2)*2^(1/2) 
+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a 
/b)^(1/4)*x^(1/2)-1))
 
3.5.47.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 2000, normalized size of antiderivative = 7.07 \[ \int \frac {\left (c+d x^2\right )^3}{x^{7/2} \left (a+b x^2\right )} \, dx=\text {Too large to display} \]

input
integrate((d*x^2+c)^3/x^(7/2)/(b*x^2+a),x, algorithm="fricas")
 
output
-1/30*(15*a^2*b*x^3*(-(b^12*c^12 - 12*a*b^11*c^11*d + 66*a^2*b^10*c^10*d^2 
 - 220*a^3*b^9*c^9*d^3 + 495*a^4*b^8*c^8*d^4 - 792*a^5*b^7*c^7*d^5 + 924*a 
^6*b^6*c^6*d^6 - 792*a^7*b^5*c^5*d^7 + 495*a^8*b^4*c^4*d^8 - 220*a^9*b^3*c 
^3*d^9 + 66*a^10*b^2*c^2*d^10 - 12*a^11*b*c*d^11 + a^12*d^12)/(a^9*b^7))^( 
1/4)*log(a^7*b^5*(-(b^12*c^12 - 12*a*b^11*c^11*d + 66*a^2*b^10*c^10*d^2 - 
220*a^3*b^9*c^9*d^3 + 495*a^4*b^8*c^8*d^4 - 792*a^5*b^7*c^7*d^5 + 924*a^6* 
b^6*c^6*d^6 - 792*a^7*b^5*c^5*d^7 + 495*a^8*b^4*c^4*d^8 - 220*a^9*b^3*c^3* 
d^9 + 66*a^10*b^2*c^2*d^10 - 12*a^11*b*c*d^11 + a^12*d^12)/(a^9*b^7))^(3/4 
) - (b^9*c^9 - 9*a*b^8*c^8*d + 36*a^2*b^7*c^7*d^2 - 84*a^3*b^6*c^6*d^3 + 1 
26*a^4*b^5*c^5*d^4 - 126*a^5*b^4*c^4*d^5 + 84*a^6*b^3*c^3*d^6 - 36*a^7*b^2 
*c^2*d^7 + 9*a^8*b*c*d^8 - a^9*d^9)*sqrt(x)) - 15*I*a^2*b*x^3*(-(b^12*c^12 
 - 12*a*b^11*c^11*d + 66*a^2*b^10*c^10*d^2 - 220*a^3*b^9*c^9*d^3 + 495*a^4 
*b^8*c^8*d^4 - 792*a^5*b^7*c^7*d^5 + 924*a^6*b^6*c^6*d^6 - 792*a^7*b^5*c^5 
*d^7 + 495*a^8*b^4*c^4*d^8 - 220*a^9*b^3*c^3*d^9 + 66*a^10*b^2*c^2*d^10 - 
12*a^11*b*c*d^11 + a^12*d^12)/(a^9*b^7))^(1/4)*log(I*a^7*b^5*(-(b^12*c^12 
- 12*a*b^11*c^11*d + 66*a^2*b^10*c^10*d^2 - 220*a^3*b^9*c^9*d^3 + 495*a^4* 
b^8*c^8*d^4 - 792*a^5*b^7*c^7*d^5 + 924*a^6*b^6*c^6*d^6 - 792*a^7*b^5*c^5* 
d^7 + 495*a^8*b^4*c^4*d^8 - 220*a^9*b^3*c^3*d^9 + 66*a^10*b^2*c^2*d^10 - 1 
2*a^11*b*c*d^11 + a^12*d^12)/(a^9*b^7))^(3/4) - (b^9*c^9 - 9*a*b^8*c^8*d + 
 36*a^2*b^7*c^7*d^2 - 84*a^3*b^6*c^6*d^3 + 126*a^4*b^5*c^5*d^4 - 126*a^...
 
3.5.47.6 Sympy [A] (verification not implemented)

Time = 78.01 (sec) , antiderivative size = 507, normalized size of antiderivative = 1.79 \[ \int \frac {\left (c+d x^2\right )^3}{x^{7/2} \left (a+b x^2\right )} \, dx=c^{3} \left (\begin {cases} \frac {\tilde {\infty }}{x^{\frac {9}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\- \frac {2}{9 b x^{\frac {9}{2}}} & \text {for}\: a = 0 \\- \frac {2}{5 a x^{\frac {5}{2}}} & \text {for}\: b = 0 \\- \frac {2}{5 a x^{\frac {5}{2}}} + \frac {b \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 a^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {b \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 a^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {b \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{a^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 b}{a^{2} \sqrt {x}} & \text {otherwise} \end {cases}\right ) + 3 c^{2} d \left (\begin {cases} \frac {\tilde {\infty }}{x^{\frac {5}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\- \frac {2}{5 b x^{\frac {5}{2}}} & \text {for}\: a = 0 \\- \frac {2}{a \sqrt {x}} & \text {for}\: b = 0 \\- \frac {\log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 a \sqrt [4]{- \frac {a}{b}}} + \frac {\log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 a \sqrt [4]{- \frac {a}{b}}} - \frac {\operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{a \sqrt [4]{- \frac {a}{b}}} - \frac {2}{a \sqrt {x}} & \text {otherwise} \end {cases}\right ) + 3 c d^{2} \left (\begin {cases} \frac {\tilde {\infty }}{\sqrt {x}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 a} & \text {for}\: b = 0 \\- \frac {2}{b \sqrt {x}} & \text {for}\: a = 0 \\\frac {\log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b \sqrt [4]{- \frac {a}{b}}} - \frac {\log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b \sqrt [4]{- \frac {a}{b}}} + \frac {\operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases}\right ) + d^{3} \left (\begin {cases} \tilde {\infty } x^{\frac {3}{2}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {7}{2}}}{7 a} & \text {for}\: b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 b} & \text {for}\: a = 0 \\- \frac {a \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {a \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {a \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 x^{\frac {3}{2}}}{3 b} & \text {otherwise} \end {cases}\right ) \]

input
integrate((d*x**2+c)**3/x**(7/2)/(b*x**2+a),x)
 
output
c**3*Piecewise((zoo/x**(9/2), Eq(a, 0) & Eq(b, 0)), (-2/(9*b*x**(9/2)), Eq 
(a, 0)), (-2/(5*a*x**(5/2)), Eq(b, 0)), (-2/(5*a*x**(5/2)) + b*log(sqrt(x) 
 - (-a/b)**(1/4))/(2*a**2*(-a/b)**(1/4)) - b*log(sqrt(x) + (-a/b)**(1/4))/ 
(2*a**2*(-a/b)**(1/4)) + b*atan(sqrt(x)/(-a/b)**(1/4))/(a**2*(-a/b)**(1/4) 
) + 2*b/(a**2*sqrt(x)), True)) + 3*c**2*d*Piecewise((zoo/x**(5/2), Eq(a, 0 
) & Eq(b, 0)), (-2/(5*b*x**(5/2)), Eq(a, 0)), (-2/(a*sqrt(x)), Eq(b, 0)), 
(-log(sqrt(x) - (-a/b)**(1/4))/(2*a*(-a/b)**(1/4)) + log(sqrt(x) + (-a/b)* 
*(1/4))/(2*a*(-a/b)**(1/4)) - atan(sqrt(x)/(-a/b)**(1/4))/(a*(-a/b)**(1/4) 
) - 2/(a*sqrt(x)), True)) + 3*c*d**2*Piecewise((zoo/sqrt(x), Eq(a, 0) & Eq 
(b, 0)), (2*x**(3/2)/(3*a), Eq(b, 0)), (-2/(b*sqrt(x)), Eq(a, 0)), (log(sq 
rt(x) - (-a/b)**(1/4))/(2*b*(-a/b)**(1/4)) - log(sqrt(x) + (-a/b)**(1/4))/ 
(2*b*(-a/b)**(1/4)) + atan(sqrt(x)/(-a/b)**(1/4))/(b*(-a/b)**(1/4)), True) 
) + d**3*Piecewise((zoo*x**(3/2), Eq(a, 0) & Eq(b, 0)), (2*x**(7/2)/(7*a), 
 Eq(b, 0)), (2*x**(3/2)/(3*b), Eq(a, 0)), (-a*log(sqrt(x) - (-a/b)**(1/4)) 
/(2*b**2*(-a/b)**(1/4)) + a*log(sqrt(x) + (-a/b)**(1/4))/(2*b**2*(-a/b)**( 
1/4)) - a*atan(sqrt(x)/(-a/b)**(1/4))/(b**2*(-a/b)**(1/4)) + 2*x**(3/2)/(3 
*b), True))
 
3.5.47.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 259, normalized size of antiderivative = 0.92 \[ \int \frac {\left (c+d x^2\right )^3}{x^{7/2} \left (a+b x^2\right )} \, dx=\frac {2 \, d^{3} x^{\frac {3}{2}}}{3 \, b} + \frac {{\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{4 \, a^{2} b} - \frac {2 \, {\left (a c^{3} - 5 \, {\left (b c^{3} - 3 \, a c^{2} d\right )} x^{2}\right )}}{5 \, a^{2} x^{\frac {5}{2}}} \]

input
integrate((d*x^2+c)^3/x^(7/2)/(b*x^2+a),x, algorithm="maxima")
 
output
2/3*d^3*x^(3/2)/b + 1/4*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3 
)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt( 
x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt(2)*arc 
tan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a 
)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a^(1/4)* 
b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)*log(-sq 
rt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)))/(a 
^2*b) - 2/5*(a*c^3 - 5*(b*c^3 - 3*a*c^2*d)*x^2)/(a^2*x^(5/2))
 
3.5.47.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 455 vs. \(2 (206) = 412\).

Time = 0.29 (sec) , antiderivative size = 455, normalized size of antiderivative = 1.61 \[ \int \frac {\left (c+d x^2\right )^3}{x^{7/2} \left (a+b x^2\right )} \, dx=\frac {2 \, d^{3} x^{\frac {3}{2}}}{3 \, b} + \frac {2 \, {\left (5 \, b c^{3} x^{2} - 15 \, a c^{2} d x^{2} - a c^{3}\right )}}{5 \, a^{2} x^{\frac {5}{2}}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} b^{3} c^{3} - 3 \, \left (a b^{3}\right )^{\frac {3}{4}} a b^{2} c^{2} d + 3 \, \left (a b^{3}\right )^{\frac {3}{4}} a^{2} b c d^{2} - \left (a b^{3}\right )^{\frac {3}{4}} a^{3} d^{3}\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a^{3} b^{4}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} b^{3} c^{3} - 3 \, \left (a b^{3}\right )^{\frac {3}{4}} a b^{2} c^{2} d + 3 \, \left (a b^{3}\right )^{\frac {3}{4}} a^{2} b c d^{2} - \left (a b^{3}\right )^{\frac {3}{4}} a^{3} d^{3}\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a^{3} b^{4}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} b^{3} c^{3} - 3 \, \left (a b^{3}\right )^{\frac {3}{4}} a b^{2} c^{2} d + 3 \, \left (a b^{3}\right )^{\frac {3}{4}} a^{2} b c d^{2} - \left (a b^{3}\right )^{\frac {3}{4}} a^{3} d^{3}\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a^{3} b^{4}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} b^{3} c^{3} - 3 \, \left (a b^{3}\right )^{\frac {3}{4}} a b^{2} c^{2} d + 3 \, \left (a b^{3}\right )^{\frac {3}{4}} a^{2} b c d^{2} - \left (a b^{3}\right )^{\frac {3}{4}} a^{3} d^{3}\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a^{3} b^{4}} \]

input
integrate((d*x^2+c)^3/x^(7/2)/(b*x^2+a),x, algorithm="giac")
 
output
2/3*d^3*x^(3/2)/b + 2/5*(5*b*c^3*x^2 - 15*a*c^2*d*x^2 - a*c^3)/(a^2*x^(5/2 
)) + 1/2*sqrt(2)*((a*b^3)^(3/4)*b^3*c^3 - 3*(a*b^3)^(3/4)*a*b^2*c^2*d + 3* 
(a*b^3)^(3/4)*a^2*b*c*d^2 - (a*b^3)^(3/4)*a^3*d^3)*arctan(1/2*sqrt(2)*(sqr 
t(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a^3*b^4) + 1/2*sqrt(2)*((a*b^3 
)^(3/4)*b^3*c^3 - 3*(a*b^3)^(3/4)*a*b^2*c^2*d + 3*(a*b^3)^(3/4)*a^2*b*c*d^ 
2 - (a*b^3)^(3/4)*a^3*d^3)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sq 
rt(x))/(a/b)^(1/4))/(a^3*b^4) - 1/4*sqrt(2)*((a*b^3)^(3/4)*b^3*c^3 - 3*(a* 
b^3)^(3/4)*a*b^2*c^2*d + 3*(a*b^3)^(3/4)*a^2*b*c*d^2 - (a*b^3)^(3/4)*a^3*d 
^3)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3*b^4) + 1/4*sqrt( 
2)*((a*b^3)^(3/4)*b^3*c^3 - 3*(a*b^3)^(3/4)*a*b^2*c^2*d + 3*(a*b^3)^(3/4)* 
a^2*b*c*d^2 - (a*b^3)^(3/4)*a^3*d^3)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x 
+ sqrt(a/b))/(a^3*b^4)
 
3.5.47.9 Mupad [B] (verification not implemented)

Time = 5.15 (sec) , antiderivative size = 583, normalized size of antiderivative = 2.06 \[ \int \frac {\left (c+d x^2\right )^3}{x^{7/2} \left (a+b x^2\right )} \, dx=\frac {2\,d^3\,x^{3/2}}{3\,b}-\frac {\frac {2\,b\,c^3}{5\,a}+\frac {2\,b\,c^2\,x^2\,\left (3\,a\,d-b\,c\right )}{a^2}}{b\,x^{5/2}}+\frac {\mathrm {atan}\left (\frac {\sqrt {x}\,{\left (a\,d-b\,c\right )}^3\,\left (16\,a^{13}\,b^5\,d^6-96\,a^{12}\,b^6\,c\,d^5+240\,a^{11}\,b^7\,c^2\,d^4-320\,a^{10}\,b^8\,c^3\,d^3+240\,a^9\,b^9\,c^4\,d^2-96\,a^8\,b^{10}\,c^5\,d+16\,a^7\,b^{11}\,c^6\right )}{{\left (-a\right )}^{9/4}\,b^{7/4}\,\left (-16\,a^{14}\,b^3\,d^9+144\,a^{13}\,b^4\,c\,d^8-576\,a^{12}\,b^5\,c^2\,d^7+1344\,a^{11}\,b^6\,c^3\,d^6-2016\,a^{10}\,b^7\,c^4\,d^5+2016\,a^9\,b^8\,c^5\,d^4-1344\,a^8\,b^9\,c^6\,d^3+576\,a^7\,b^{10}\,c^7\,d^2-144\,a^6\,b^{11}\,c^8\,d+16\,a^5\,b^{12}\,c^9\right )}\right )\,{\left (a\,d-b\,c\right )}^3}{{\left (-a\right )}^{9/4}\,b^{7/4}}+\frac {\mathrm {atan}\left (\frac {\sqrt {x}\,{\left (a\,d-b\,c\right )}^3\,\left (16\,a^{13}\,b^5\,d^6-96\,a^{12}\,b^6\,c\,d^5+240\,a^{11}\,b^7\,c^2\,d^4-320\,a^{10}\,b^8\,c^3\,d^3+240\,a^9\,b^9\,c^4\,d^2-96\,a^8\,b^{10}\,c^5\,d+16\,a^7\,b^{11}\,c^6\right )\,1{}\mathrm {i}}{{\left (-a\right )}^{9/4}\,b^{7/4}\,\left (-16\,a^{14}\,b^3\,d^9+144\,a^{13}\,b^4\,c\,d^8-576\,a^{12}\,b^5\,c^2\,d^7+1344\,a^{11}\,b^6\,c^3\,d^6-2016\,a^{10}\,b^7\,c^4\,d^5+2016\,a^9\,b^8\,c^5\,d^4-1344\,a^8\,b^9\,c^6\,d^3+576\,a^7\,b^{10}\,c^7\,d^2-144\,a^6\,b^{11}\,c^8\,d+16\,a^5\,b^{12}\,c^9\right )}\right )\,{\left (a\,d-b\,c\right )}^3\,1{}\mathrm {i}}{{\left (-a\right )}^{9/4}\,b^{7/4}} \]

input
int((c + d*x^2)^3/(x^(7/2)*(a + b*x^2)),x)
 
output
(2*d^3*x^(3/2))/(3*b) - ((2*b*c^3)/(5*a) + (2*b*c^2*x^2*(3*a*d - b*c))/a^2 
)/(b*x^(5/2)) + (atan((x^(1/2)*(a*d - b*c)^3*(16*a^7*b^11*c^6 + 16*a^13*b^ 
5*d^6 - 96*a^8*b^10*c^5*d - 96*a^12*b^6*c*d^5 + 240*a^9*b^9*c^4*d^2 - 320* 
a^10*b^8*c^3*d^3 + 240*a^11*b^7*c^2*d^4))/((-a)^(9/4)*b^(7/4)*(16*a^5*b^12 
*c^9 - 16*a^14*b^3*d^9 - 144*a^6*b^11*c^8*d + 144*a^13*b^4*c*d^8 + 576*a^7 
*b^10*c^7*d^2 - 1344*a^8*b^9*c^6*d^3 + 2016*a^9*b^8*c^5*d^4 - 2016*a^10*b^ 
7*c^4*d^5 + 1344*a^11*b^6*c^3*d^6 - 576*a^12*b^5*c^2*d^7)))*(a*d - b*c)^3) 
/((-a)^(9/4)*b^(7/4)) + (atan((x^(1/2)*(a*d - b*c)^3*(16*a^7*b^11*c^6 + 16 
*a^13*b^5*d^6 - 96*a^8*b^10*c^5*d - 96*a^12*b^6*c*d^5 + 240*a^9*b^9*c^4*d^ 
2 - 320*a^10*b^8*c^3*d^3 + 240*a^11*b^7*c^2*d^4)*1i)/((-a)^(9/4)*b^(7/4)*( 
16*a^5*b^12*c^9 - 16*a^14*b^3*d^9 - 144*a^6*b^11*c^8*d + 144*a^13*b^4*c*d^ 
8 + 576*a^7*b^10*c^7*d^2 - 1344*a^8*b^9*c^6*d^3 + 2016*a^9*b^8*c^5*d^4 - 2 
016*a^10*b^7*c^4*d^5 + 1344*a^11*b^6*c^3*d^6 - 576*a^12*b^5*c^2*d^7)))*(a* 
d - b*c)^3*1i)/((-a)^(9/4)*b^(7/4))